Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; : 172515, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38642759

RESUMO

The disposal of Chinese medicinal herbal residues (CMHRs) derived from Chinese medicine extraction poses a significant environmental challenge. Aerobic composting presents a sustainable treatment method, yet optimizing nutrient conversion remains a critical concern. This study investigated the effect and mechanism of biochar addition on nitrogen and phosphorus transformation to enhance the efficacy and quality of compost products. The findings reveal that incorporating biochar considerably enhanced the process of nutrient conversion. Specifically, biochar addition promoted the retention of bioavailable organic nitrogen and reduced nitrogen loss by 28.1 %. Meanwhile, adding biochar inhibited the conversion of available phosphorus to non-available phosphorus while enhancing its conversion to moderately available phosphorus, thereby preserving phosphorus availability post-composting. Furthermore, the inclusion of biochar altered microbial community structure and fostered organic matter retention and humus formation, ultimately affecting the modification of nitrogen and phosphorus forms. Structural equation modeling revealed that microbial community had a more pronounced impact on bioavailable organic nitrogen, while humic acid exerted a more significant effect on phosphorus availability. This research provides a viable approach and foundation for regulating the levels of nitrogen and phosphorus nutrients during composting, serving as a valuable reference for the development of sustainable utilization technologies pertaining to CMHRs.

2.
Water Res ; 254: 121417, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461597

RESUMO

Single-atom catalysts (SACs) have emerged as competitive candidates for Fenton-like oxidation of micro-pollutants in water. However, the impact of metal insertion on the intrinsic catalytic activity of carrier materials has been commonly overlooked, and the environmental risk due to metal leaching still requires attention. In contrast to previous reports, where metal sites were conventionally considered as catalytic centers, our study investigates, for the first time, the crucial catalytic role of the carbon carrier modulated through hetero-single-atom dispersion and the regulation of Fenton-like oxidation pathways. The inherent differences in electronic properties between Fe and Co can effectively trigger long-range electron rearrangement in the sp2-carbon-conjugated structure, creating more electron-rich regions for peroxymonosulfate (PMS) complexation and initiating the electron transfer process (ETP) for pollutant degradation, which imparts the synthesized catalyst (FeCo-NCB) with exceptional catalytic efficiency despite its relatively low metal content. Moreover, the FeCo-NCB/PMS system exhibits enduring decontamination efficiency in complex water matrices, satisfactory catalytic stability, and low metal leaching, signifying promising practical applications. More impressively, the spatial relationship between metal sites and electron density clouds is revealed to determine whether high-valent metal-oxo species (HVMO) are involved during the decomposition of surface complexes. Unlike single-type single-atom dispersion, where metal sites are situated within electron-rich regions, hetero-single-atom dispersion can cause the deviation of electron density clouds from the metal sites, thus hindering the in-situ oxidation of metal within the complexes and minimizing the contribution of HVMO. These findings provide new insights into the development of carbon-based SACs and advance the understanding of nonradical mechanisms underpinning Fenton-like treatments.


Assuntos
Carbono , Poluentes Ambientais , Peróxidos , Oxirredução , Transporte de Elétrons , Eletrônica , Água
3.
Environ Sci Technol ; 57(43): 16662-16672, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37782530

RESUMO

Previous studies mostly held that the oxidation capacity of ferrate depends on the involvement of intermediate iron species (i.e., FeIV/FeV), however, the potential role of the metastable complex was disregarded in ferrate-based heterogeneous catalytic oxidation processes. Herein, we reported a complexation-mediated electron transfer mechanism in the ferrihydrite-ferrate system toward sulfamethoxazole (SMX) degradation. A synergy between intermediate FeIV/FeV oxidation and the intramolecular electron transfer step was proposed. Specifically, the conversion of phenyl methyl sulfoxide (PMSO) to methyl phenyl sulfone (PMSO2) suggested that FeIV/FeV was involved in the oxidation of SMX. Moreover, based on the in situ Raman test and chronopotentiometry analysis, the formation of the metastable complex of ferrihydrite/ferrate was found, which possesses higher oxidation potential than free ferrate and could achieve the preliminary oxidation of organics via the electron transfer step. In addition, the amino group of SMX could complex with ferrate, and the resulting metastable complex of ferrihydrite/ferrate would combine further with SMX molecules, leading to intramolecular electron transfer and SMX degradation. The ferrate loss experiments suggested that ferrihydrite could accelerate the decomposition of ferrate. Finally, the effects of pH value, anions, humic acid, and actual water on the degradation of SMX by ferrihydrite-ferrate were also revealed. Overall, ferrihydrite demonstrated high catalytic capacity, good reusability, and nontoxic performance for ferrate activation. The ferrihydrite-ferrate process may be a green and promising method for organic removal in wastewater treatment.


Assuntos
Elétrons , Poluentes Químicos da Água , Ferro/química , Compostos Férricos , Oxirredução , Compostos Orgânicos , Poluentes Químicos da Água/análise
4.
Sci Total Environ ; 899: 165783, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37495140

RESUMO

Food waste (FW) has become a worldwide issue, while anaerobic digestion (AD) has appeared as a widely adopted technology to recover energy and resources from FW. Compared to many existing case studies of centralized AD system, the comprehensive study of decentralized micro-AD system from both system energy efficiency and carbon emission perspective is still scanty, particularly system operated under ambient temperature conditions. In this study, an actual decentralized micro-AD system with treating capacity of 300 kg FW/d for a local hawker center in Singapore was reported and evaluated. The results showed that 1894.5 kg of FW was treated and 173 m3 biogas with methane content of 53 % was produced during the experimental period of 75 days. The methane yield results showed a high FW degradation efficiency (87.87 %). However, net energy consumption and net carbon emission were observed during the experimental period. Nevertheless, energy self-efficiency and carbon neutrality, even net energy output and carbon reduction, can be achieved by increasing daily FW loading and biogas engine efficiency. Specifically, the FW loading for system energy self-efficiency was identified as 159 kg/d for engine efficiency of 35 % at a high kitchen waste/table waste ratio (63 %/37 %, with covid-19 dine-in restrictions); while they were 112 and 58 kg/d for engine efficiency of 25 % and 35 %, respective, at a low kitchen waste/table waste ratio (31 %/69 %, without covid-19 dine-in restrictions). The carbon emission ranged from 156.08 kg CO2-eq/t FW to -77.35 kg CO2-eq/t FW depending on the FW loading quantity and engine efficiency. Moreover, the sensitivity analysis also showed that the used electricity source for substitution influenced the carbon emission performance significantly. The obtained results imply that the decentralized micro-AD system could be a feasible FW management solution for energy generation and carbon reduction when the FW loading and engine electrical efficiency are carefully addressed.


Assuntos
COVID-19 , Eliminação de Resíduos , Gerenciamento de Resíduos , Humanos , Alimentos , Biocombustíveis , Carbono , Dióxido de Carbono , Anaerobiose , Reatores Biológicos , Metano
5.
J Hazard Mater ; 459: 132054, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37473569

RESUMO

Sulfate radical-based advanced oxidation processes (AOPs) combined biological system was a promising technology for treating antibiotic wastewater. However, how pretreatment influence antibiotic resistance genes (ARGs) propagation remains largely elusive, especially the produced by-products (antibiotic residues and sulfate) are often ignored. Herein, we investigated the effects of zero valent iron/persulfate pretreatment on ARGs in bioreactors treating sulfadiazine wastewater. Results showed absolute and relative abundance of ARGs reduced by 59.8%- 81.9% and 9.1%- 52.9% after pretreatments. The effect of 90-min pretreatment was better than that of the 30-min. The ARGs reduction was due to decreased antibiotic residues and stimulated sulfate assimilation. Reduced antibiotic residues was a major factor in ARGs attenuation, which could suppress oxidative stress, inhibit mobile genetic elements emergence and resistant strains proliferation. The presence of sulfate in influent supplemented microbial sulfur sources and facilitated the in-situ synthesis of antioxidant cysteine through sulfate assimilation, which drove ARGs attenuation by alleviating oxidative stress. This is the first detailed analysis about the regulatory mechanism of how sulfate radical-based AOPs mediate in ARGs attenuation, which is expected to provide theoretical basis for solving concerns about by-products and developing practical methods to hinder ARGs propagation.


Assuntos
Genes Bacterianos , Águas Residuárias , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Sulfatos/farmacologia , Reatores Biológicos , Óxidos de Enxofre/farmacologia
6.
J Hazard Mater ; 454: 131463, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37141778

RESUMO

Recently, Mn-based materials have a great potential for selective removal of organic contaminants with the assistance of oxidants (PMS, H2O2) and the direct oxidation. However, the rapid oxidation of organic pollutants by Mn-based materials in PMS activation still presents a challenge due to the lower conversion of surface Mn (III)/Mn (IV) and higher reactive energy barrier for reactive intermediates. Here, we constructed Mn (III) and nitrogen vacancies (Nv) modified graphite carbon nitride (MNCN) to break these aforementioned limitations. Through analysis of in-situ spectra and various experiments, a novel mechanism of light-assistance non-radical reaction is clearly elucidated in MNCN/PMS-Light system. Adequate results indicate that Mn (III) only provide a few electrons to decompose Mn (III)-PMS* complex under light irradiation. Thus, the lacking electrons necessarily are supplied from BPA, resulting in its greater removal, then the decomposition of the Mn (III)-PMS* complex and light synergism form the surface Mn (IV) species. Above Mn-PMS complex and surface Mn (IV) species lead to the BPA oxidation in MNCN/PMS-Light system without the involvement of sulfate (SO4• ̶) and hydroxyl radicals (•OH). The study provides a new understanding for accelerating non-radical reaction in light/PMS system for the selective removal of contaminant.

7.
Sci Total Environ ; 880: 163054, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36963691

RESUMO

The synergistic activation of persulfate by multiple factors could degrade pollutants more efficiently. However, the co-activation method based on metal ions has the risk of leakage. The non-metallic coupling method could achieve the same efficiency as the metal activation and meanwhile release environmental stress. In this study, the original biochar (BC) was prepared through using Chinese medicinal residue of Acanthopanax senticosus as the precursor. Compared with other biochar, the pore size structure was higher and toxicity risk was lower. The ultrasonic (US)/Acanthopanax senticosus biochar (ASBC)/persulfate oxidation system was established for Atrazine (ATZ). Results showed that 45KHz in middle and low frequency band cooperated with ASBC600 to degrade nearly 70 % of ATZ within 50 min, and US promoted the formation of SO4- and OH. Meanwhile, the synergy index of US and ASBC was calculated to be 1.18, which showed positive synergistic effect. Finally, the potential toxicity was examined by using Toxicity Characteristic Leaching Procedure (TCLP) and luminescent bacteria. This study provides a promising way for the activation of persulfate, which is expected to bring a new idea for the win-win situation of pollutant degradation and solid waste resource utilization.


Assuntos
Atrazina , Eleutherococcus , Poluentes Químicos da Água , Atrazina/toxicidade , Atrazina/análise , Medicina Tradicional Chinesa , Metais , Carvão Vegetal/química , Poluentes Químicos da Água/análise
8.
Sci Total Environ ; 855: 158849, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36122730

RESUMO

In order to promote low-carbon sustainable operational management of the wastewater treatment plants (WWTPs), automatic control and optimal operation technologies, which devote to improving effluent quality, operational costs and greenhouse gas (GHG) emissions, have flourished in recent years. There is no consensus on the design procedure for optimal control/operation of sustainable WWTPs. In this review, we summarize recent researches on developing control and optimization strategies for GHG mitigation in WWTPs. Faced with the fact that direct carbon dioxide (CO2) emissions (considered biological origin) are generally not included in the carbon footprint of WWTPs, direct emissions (nitrous oxide (N2O), methane (CH4)) and indirect emissions are paid much attention. Firstly, the plant-wide models with GHG dynamic simulation, which are employed to design and evaluate the automatic control schemes as well as representative studies on identifying key factors affecting GHG emissions or comprehensive performance are outlined. Then, both traditional and advanced control methods commonly used in GHG mitigation are reviewed in detail, followed by the multi-objective optimization practices of control/operational parameters. Based on the mentioned control and (or) optimization strategies, a novel design framework for the optimal control/operation of sustainable WWTPs is proposed. The findings and design framework proposed in the paper will provide guidance for GHG mitigation and sustainable operation in WWTPs. It is foreseeable that more accurate and appropriate plant-wide models together with flexible control methods and intelligent optimization strategies will be developed to satisfy the upgrading requirements of WWTPs in the future.


Assuntos
Gases de Efeito Estufa , Purificação da Água , Efeito Estufa , Eliminação de Resíduos Líquidos/métodos , Óxido Nitroso/análise
9.
Bioresour Technol ; 368: 128306, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36372382

RESUMO

To preserve the water resources, this study has analyzed the ecotoxicity and antibiotic resistance genes (ARGs) induction capacity of sulfadiazine degradation intermediates resulting from persulfate activation oxidation enhanced by ultraviolet, ultrasound and microwave. The five degradation pathways caused by the contribution discrepancy of electron transfer and singlet oxygen (1O2) and variations in the ecotoxicity of different degradation products were analyzed. Microcosm experiment exhibited that the microbial community in actual water changed significantly with SDZ and degradation intermediates, in which the dominant genera were Aeromonas, Cupriavidus, Elizabethkingia and Achromobacter. Except for the selective pressure on bacteria, the degradation intermediates also exert a certain degree or even stronger induction on sulfonamide ARGs (sul4, sul1 and sul2) than SDZ. Furthermore, the potential hosts for sulfonamide ARGs were revealed by network analysis. These results provide a better understanding of antibiotics degradation mechanism and ARGs occurrence, which is useful for controlling the spread of ARGs.


Assuntos
Antibacterianos , Sulfadiazina , Sulfadiazina/farmacologia , Sulfadiazina/metabolismo , Antibacterianos/farmacologia , Genes Bacterianos/genética , Resistência Microbiana a Medicamentos/genética , Sulfonamidas
10.
PeerJ ; 10: e14136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275470

RESUMO

WRKY transcription factors (TF) have been identified in many plant species and play critical roles in multiple stages of growth and development and under various stress conditions. As one of the most popular vegetable crops, asparagus lettuce has important medicinal and nutritional value. However, study of WRKY TFs family in asparagus lettuce is limited. With the lettuce (Lactuca sativa L.) genome publication, we identified 76 WRKY TFs and analyzed structural characteristics, phylogenetic relationships, chromosomal distribution, interaction network, and expression profiles. The 76 LsWRKY TFs were phylogenetically classified as Groups I, II (IIa-IIe), and III. Cis element analysis revealed complex regulatory relationships of LsWRKY genes in response to different biological progresses. Interaction network analysis indicated that LsWRKY TFs could interact with other proteins, such as SIB (sigma factor binding protein), WRKY TFs, and MPK. The WRKYIII subfamily genes showed different expression patterns during the progress of asparagus lettuce stem enlargement. According to qRT-PCR analysis, abiotic stresses (drought, salt, low temperature, and high temperature) and phytohormone treatment could induce specific LsWRKYIII gene expression. These results will provide systematic and comprehensive information on LsWRKY TFs and lay the foundation for further clarification of the regulatory mechanism of LsWRKY, especially LsWRKYIII TFs, involved in stress response and the progress of plant growth and development.


Assuntos
Fatores de Transcrição , Fatores de Transcrição/genética , Filogenia , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Cromossomos/metabolismo
11.
Environ Res ; 212(Pt B): 113294, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35460635

RESUMO

Due to its wide application and high value, the production of medium chain fatty acids (MCFAs) from waste biomass has become one of the worldwide research hotspots. Increasing the carbon element participation from short-chain fatty acids to the form of MCFAs is also conductive to reduce the release of biogas from biological treatment process, because carbon is in the form of MCFAs instead of biogas which directly contribute to process carbon emissions reduction. However, many barriers limiting MCFAs production and application remain to be resolved. Aiming continuous MCFAs production from lactate-rich waste biomass, this study optimized the operation conditions and clarified the main limiting factors and possible mechanisms. The maximum caproic acid concentration of 2.757 g/L were obtained at the Upflow Velocity (ULV) of 1.15 m/h and pH 4.9-5.1. Caproiciproducens, Pseudoramibacter, norank_f_Eubacteriaceae, and Oscillibacter were identified to be the dominant microbial genus responsible for MCFAs production from lactate. The reduction of carbon emissions calculation was also studied in the present processes.


Assuntos
Biocombustíveis , Carbono , Ácidos Graxos , Fermentação , Lactatos
12.
Bioresour Technol ; 352: 126940, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35245649

RESUMO

The main purpose of this study was to explore the pretreatment process of corn starch wastewater (CSW) and engineered microalgae cultivation strategy to improve the nutrient recovery from wastewater and the yield of microalgae lutein. One-stage enzymatic hydrolysis utilizing α-amylase and glucoamylase simultaneously was established to efficiently harvest a maximum concentration of reducing sugar content of 7.26 g/L from CSW in 50 min. Lutein yield of 10.96 mg/L was obtained under 24 h continuous illumination with 2200 Lux light intensity. Furthermore, a cyclic feeding cultivation strategy was developed to improve lutein accumulation and COD removal up to 25.9 mg/L and 50.7%, respectively, after three cultivation cycles. Lutein yield of 14.86 mg/L and COD removal efficiency of 73.2% was achieved with further implementation in actual wastewater. This work provided a new perspective in developing the potential of cultivating microalgae with corn starch wastewater to produce high-value lutein.


Assuntos
Microalgas , Biomassa , Hidrólise , Luteína , Amido , Águas Residuárias , Zea mays
13.
Environ Res ; 204(Pt A): 111947, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34454935

RESUMO

The medium chain fatty acids (MCFAs) produced from organic wastes can replace part fossil-fuel-based products to promote the sustainable development of economy and environment. However, the selection and collocation of feedstocks for MCFAs production are lack of reference basis. This study thereby aimed to investigate how the commonly used electron donor (ED) and substrate configuration affect MCFAs synthesis and then obtain the optimal substrate composition. It was found that the optimized ratios for ethanol/acetate, lactate/acetate, and ethanol/lactate/acetate were 3/1, 2/1, and 2/1/1, respectively, and the optimal substrate concentration was 400 mM C. Combining ethanol and lactate as co-EDs effectively concentrated substrate-carbon-flow (increased by 20-28% than sole ED) on MCFAs synthesis by promoting the elongation of butyrate and reutilization of by-products. As a result, the higher MCFAs yield of 646.22 mg COD/g COD and selectivity of 67.72% were obtained from co-EDs than those from sole ED. Moreover, the key functional bacteria enriched under different ED were also discrepant, which were Clostridium sensu stricto for ethanol, Corynebacterium for lactate, and Veillonella and Oscillibacter for ethanol-lactate, respectively. This study provided a basic but significant reference for the scale-up MCFAs production.


Assuntos
Ácidos Graxos , Microbiota , Acetatos , Etanol , Fermentação
14.
Bioresour Technol ; 340: 125633, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34315125

RESUMO

Medium chain fatty acids (MCFAs) that produced from affordable waste biomass via chain elongation (CE) technology are recognized as the potential alternatives to part fossil-derived chemicals, contributing to the sustainable development of economy and environment. The purpose of this review is to provide comprehensive analyses on the opportunities and challenges of MCFAs production and application. First, both two microbial MCFAs synthesis pathways of reverse ß-oxidation and fatty acid biosynthesis were introduced/compared in detail to give readers a thorough understanding of the CE process, with the expectation of further boosting MCFAs production by well distinguishing them. Furthermore, the six key MCFAs production bottlenecks, corresponding research progresses, and possible solutions were analyzed. Five major MCFAs production strategies with their production mechanism, performances, and characteristics were also critically assessed. Additionally, the commercial production status was introduced, and future alternative production mode and research priorities were also recommended.


Assuntos
Ácidos Graxos , Biomassa , Fermentação , Oxirredução
15.
J Hazard Mater ; 402: 123471, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32693336

RESUMO

Short chain carboxylic acids (SCCAs) production is one of the primary ways to recycle excess sludge (ES). However, the high cost for the SCCAs separation/extraction due to its complete miscibility in water hinders the practical application of SCCAs and the popularization of this recycling way. To overcome this barrier, this study performed an emerging chain elongation (CE) technology to upgrade the SCCAs-rich sludge fermentation broth into the highly hydrophobic medium chain carboxylic acids (MCCAs). In a continuous expanded granule sludge bed (EGSB) reactor, a maximal MCCAs yield of 67.39 % and the corresponding concentration of 9.80 g COD/L (224.97 mM C/L) were achieved. By supplying CO2 at a loading rate of 2 [Formula: see text] to lower the hydrogen partial pressure, the ethanol utilization rate and the resulting MCCAs yield were further improved. In addition, three branched-MCCAs including iso-caproate, iso-heptylate, and iso-caprylate were obtained the first time from waste biomass with the average proportions of 6.17 %, 3.65 %, and 0.8 %, respectively. The branched-MCCAs came from the CE of branched-SCCAs. The granule sludges performing CE were mainly consisted of rod-shaped cells, and dominated by Clostridium sensu stricto and Clostridium IV. This study is expected to lay a foundation for recycling ES to MCCAs.


Assuntos
Ácidos Carboxílicos , Esgotos , Biomassa , Reatores Biológicos , Etanol , Fermentação
16.
Water Res ; 190: 116678, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33279747

RESUMO

Membrane fouling and ammonium transmembrane diffusion simultaneously pose great challenges in membrane-based pre-concentration of domestic wastewater for efficient subsequent resources recovery (i.e., energy and nutrients). Herein, amine-functionalized osmotic membranes were fabricated by optimizing the grafting pathway of polyamidoamine (PAMAM) dendrimer to mitigate fouling and ammonium transmembrane diffusion. Compared to the control membrane, the PAMAM-grafted membranes with abundant primary amine groups possessed substantially increased hydrophilicity and positive charges (i.e., protonated primary amines) and thus exhibited superior anti-fouling capability and ammonium selectivity. With further increasing the PAMAM grafting ratio, the membrane exhibited a steady enhancement in ammonium selectivity and eventually achieved an ultra-high ammonium rejection of 99.4%. Nevertheless, the anti-fouling capability of such ammonium ultra-selective membrane was weakened due to the suppression of the adverse impact of excessive positive charges over the beneficial effect of increased surface hydrophilicity. This in turn leads to a drop of ammonium rejection below 90% during domestic wastewater concentration. This study demonstrates that the membrane with a moderate primary amine loading could achieve the highest anti-fouling capability with only less than 10% flux decline and meanwhile maintain an excellent ammonium rejection above 94% during raw domestic wastewater concentration. This work provides theoretical guidance for fabricating simultaneously enhanced anti-fouling and ammonia-rejecting membranes.


Assuntos
Compostos de Amônio , Purificação da Água , Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Nutrientes , Osmose , Águas Residuárias
17.
Environ Res ; 185: 109390, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32251913

RESUMO

Metabolic uncouplers inhibit biofilm and biofouling formation in membrane bioreactor (MBR) systems, which have been considered as a potential biofouling control alternative. To better understand the inhibitory mechanism of uncoupler on biofouling, this study investigated the impact of the uncoupler 3, 3', 4', 5-tetrachlorosalicylanilide (TCS) on biofilm formation of B. subtilis in different development stages. Significant reductions in both the initial bacterial attachment stage and the subsequent biofilm development stage were caused by TCS at 100 µg/L. The motility of B. subtilis in semisolid medium was inhibited by TCS, which explicitly explained the reduction in initial bacterial attachment. Meanwhile, a reduction of extracellular polymeric substance (EPS) secretion owing to TCS suggested why biofilm development was suppressed. In addition, the fluorescent materials in tight-bound EPS (TB-EPS) and loose-bound EPS (LB-EPS) of Bacillus subtilis cultured in different TCS concentrations were distinguished and quantified by three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC). The results of this study suggested that the biofilm inhibitory mechanism of the uncoupler was both a inhibition in bacterial motor ability and a reduction in EPS secretion.


Assuntos
Incrustação Biológica , Matriz Extracelular de Substâncias Poliméricas , Biofilmes , Reatores Biológicos , Esgotos
18.
Chemosphere ; 245: 125363, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31877457

RESUMO

Biofouling is a limiting bottleneck in the development of membrane bioreactor (MBR) since the birth of this technology. Recently, the biofouling control strategy based on interfering with the bacterial quorum sensing (QS) system is highly desirable for biofouling control in MBR. In this study, three lab-scale parallel MBR systems were operated over 100 days to investigate the inhibitory effect of a metabolic uncoupler (3,3',4',5-tetrachlorosalicylanilide, TCS) on biofouling and the potential mechanism for biofouling control. Compared to the control MBR, the fouling cycle duration of MBR 2 with 100 µg/L TCS extended over two times. The attached biomass on membrane in MBR 2 decreased over 50% at the end of each operating period, which indicated that the addition of TCS significantly mitigated microorganisms accumulation on membrane. The content of interspecies QS signal (autoinducer-2) and intraspecific QS signals (N-octanoyl-dl-homoserine lactone, C8-HSL) was reduced by the TCS, suggesting the secretion of QS signals in MBR were affected by uncoupler. Although the addition of TCS induced brief fluctuations of extracellular proteins and polysaccharides, microorganisms seemed to rapidly acclimatize to the presence of TCS and then the secretion of extracellular polymeric substances (EPS) was inhibited by 100 µg/L TCS. The continuous operation of MBR was not be affected by the low-concentration uncoupler via the analysis of substrate removal and sludge growth. This study systematically evaluated the effect and inhibitory efficiency of TCS on biofouling, biomass accumulation, QS signals, EPS and treatment performances, demonstrating the feasibility of metabolic uncoupler for biofouling control in MBR.


Assuntos
Reatores Biológicos/microbiologia , Membranas Artificiais , Eliminação de Resíduos Líquidos/métodos , 4-Butirolactona/análogos & derivados , Bactérias , Incrustação Biológica , Membranas , Percepção de Quorum/efeitos dos fármacos , Esgotos/microbiologia
19.
Bioresour Technol ; 291: 121573, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31376665

RESUMO

Upgrading lactate/carbohydrate-rich waste biomass into medium-chain carboxylic acids (MCCAs) by chain elongation (CE) technology exhibits economic and environmental benefits. However, the largely dispersive lactate-carbon-flow decreases MCCAs yield. This work discovered appropriate H2 supply could significantly reduce lactate-carbon-flow loss and improve MCCAs production (∼1.65 times) when the system is not operated according to well-defined operating conditions, and revealed corresponding mechanism. Hydrogen (H2) supply largely enhanced electron efficiency and electron transfer capacity, and H2 could reduce propionate (from competing acrylate pathway, which should be prevented, but when not possible, the carbon recovery from propionate is possible) to propanol, which was used as electron donor to elongate acetate and propionate. Moreover, H2 could react with CO2 (from CE process) to sequentially generate acetate and ethanol, which further contributed to caproate/caprylate generation. Comparing with non-H2-supplemented test, the lactate-carbon-flow used for MCCAs production was enhanced by ∼28.4% after H2 supply, and Clostridium spp. were the key discriminative microorganisms.


Assuntos
Carbono/metabolismo , Ácidos Carboxílicos/metabolismo , Hidrogênio/metabolismo , Ácido Láctico/metabolismo , Ácido Acético/metabolismo , Biomassa , Reatores Biológicos , Caproatos/metabolismo , Caprilatos/metabolismo , Etanol/metabolismo , Fermentação
20.
Water Res ; 160: 405-414, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31163316

RESUMO

N-doped biochars (NBCs) were prepared by pyrolyzing corncob biomass and urea in different proportion which manifested superior catalytic performance of peroxydisulfate (PDS) activation for sulfadiazine (SDZ) degradation. Through both dynamic fitting and density functional theory (DFT) calculations, the critical role of edge nitrogenation in biochar (BC) structure was revealed for the first time. The incorporation of edge nitrogen configurations (pyridinic N and pyrrolic N rather than graphitic N) generated reactive sites for the PDS activation. Additionally, a thorough investigation was conducted to explicate the PDS activation mechanism by NBC through chemical quenching experiments, electron spin resonance (ESR) detection, oxidant consumption monitoring and electrochemical analysis. Different from the well-reported singlet oxygen (1O2) dominated nonradical mechanism, an electron transfer pathway involving surface-bound reactive complexes was proved to play a major role in the NBC/PDS system. Benefit from the electron transfer mechanism, the NBC/PDS system not only has wide pH adaptation for real application, but also shows high resistance to the inorganic anions in aquatic environment. We believe this study will deepen the understanding of the carbon-driven persulfate activation mechanism and provide strong technical support for the BC-mediated persulfate activation in practical applications.


Assuntos
Elétrons , Grafite , Catálise , Carvão Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...